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A Remark on the Hamiltonian Formalism for 
Incompressible Flows 

D a r i o  B e n e d e t t o  i 

Received November 20, 1994 

We revisit the Hamiltonian formalism for incompressible flows as introduced by 
Oseledets. Our aim is to clarify some ambiguities in this formalism due to the 
nonintegrable singularity of the kernel which defines the Hamiltonian. 
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Oseledets ~5~ introduced a Hamil tonian  formalism for incompressible fluids. 
In this formalism the velocity field is the projection on the divergence-free 
fields of  a new unknown,  a vector field which is physically unobservable;  
this new variable and the flow associated with the velocity field satisfy the 
Hami l ton  equations for a Hamil tonian  which is practically the energy of 
the fluid; i.e., the L2-norm of the velocity field. Unfortunately,  due to a 
nonintegrable singularity of the kernel defining the Hamil tonian  in terms of 
the new variable, some of the conclusions in ref. 5 (including the expression 
of the Hamil tonian)  are not correct, or at least ambiguous.  Thus, even 
though the general strategy is interesting and fruitful, a more  careful 
analysis is necessary. The aim of  this note is to fill this gap. 

Considering the term ( 0 ,  7, u), where O( . ,  t): I~ 3 ---, R 3 is a family of 
invertible mappings  parametr ized by the time t~  1~, ~, = '~(x,  t) is a time- 
dependent  vector  field, and u = u ( x ,  t) is the projection of M(x,  t ) =  
"/(O-~(x,  t), t) on the divergence-free field. Finally, ~ induces the integral 
lines of  u. Namely  

7(x, t ) =  u (~(x ,  t), t ) +  V~b(~(x, t), t) (1) 

V. u(x, t) = 0 (2) 
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0,O(x, t )=  u(O(x, t), t) 
(3) 

O(x ,  0) = x 

Moreover, we assume 

0,V(x, t) = --(Vu)' (O(x, t), t) y(x) (4) 

where the matrix (Vu)' is (Vu)~j=Ou:/Oxi. The system (3), (4) with the 
constraints (1), (2) is equivalent to the Euler equation in the following 
sense. 

P r o p o s i t i o n  1. If Eqs. (1)-(4) hold, then u satisfies 

O,u+(u .V)  u =  --VP (5) 

for some scalar field P (the pressure), which satisfies 

t l  2 

P =  0,~, + (u. V) ~, +-~- (6) 

Conversely, if u is a divergence-free field which satisfies the Euler equation 
(5), and ~ is a scalar field which satisfies Eq. (4), then 7 = u(O)+ V~,(O) 
satisfies Eq. (2), provided that O is the flow associated with the velocity 
field u. 

The proof follows formally by a calculation~'2"4"s); it can be made 
rigorous, locally in time, by using known results on the local existence of 
classical solutions to the Euler problem (6) (see, e.g., ref. 3). 

The interest in the system (3), (4) is in its Hamiltonian structure, 
which we are going to exploit. It is worth mentioning that such a 
Hamiltonian formalism suggests a Hamiltonian particle approximation 
recently implemented numerically, c2,1) 

Following ref. 5, we choose the canonical conjugate variables as 
�9 =O(x )  and 7=7(x) ,  for which Eqs. (3), (4) will be the Hamiltonian 
equations. Then we express the energy in terms of �9 and 7. 

Let ~ be the projection operator on the divergence-free field: 

~ 'v=v- -VA - t  V.v (7) 

for a given smooth field v = v(x). The energy of the fluid (purely kinetic) is 
defined by 

e =  t dx . 2 =  �89 dx 7 ( |  �9 (8) 
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It seems reasonable to choose the right-hand side of (8) as the 
Hamiltonian, but if we do this, we do not obtain the system (3), (4). The 
right choice is the following. Let us denote 

p(~/, O)(x) = 7(O-~(x)) det V(O-~(x)) (9) 

Then the Hamiltonian which we propose is 

H= �89 f (10) 

R e m a r k .  If �9 is an incompressible mapping, H =  E, but we need 
expression (10) for the Hamiltonian to do the correct variation on �9 
without the incompressibility constraint. The incompressibility will be just 
a consequence of the Hamiltonian equations. 

We perform the variations of such H observing that 

H(y + fi"/, 0 )  - H(y, 0 )  

= f dx(p(7 + ~/, O)(x) - p(),, O)(x)) �9 ~'p(x) + o(6~/) 

= f dy d~/(y) �9 (~p)(O(y)) + o(~"/) (11) 

H(y, �9 + riO) - H(y, 0 )  

= f dx(p(~', �9 + 80)(x)  -- P('I, O)(x)). (~p)(x) + 0(60) 

= f dy y(y). ( (~p)(O + JO)(y) - (~itt)(O(y))) + 0(60) 

= f dy(V~p) '  (O(y)) y(y). riO(y) + o(60) (12) 

[in (12) and (13) we have used the changes of variables x = O ( y )  and 
x = ( 0  + JO)(Y3 ]. 

Then the Hamiltonian equations are 

a , o  = ( ~ p ) ( o )  

0,~, = - ( v ~ p ) '  ( o )  ~, 
(13) 
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We note that : ' i t  is a divergence-free field and that @(x)=x  at time 
t=0 .  Then from the first equation of (13) it follows that det V@= 1. 
Consequently, 

: ' I t  = :'(7(@ - ' ) )  = u (14) 

Equations (13) with the condition (14) are exactly the system (3), (4). 

Remark .  We can choose other laws of dependence of the 
Hamiltonian on det V@ (unobservable .... ), which give Hamilton equations, 
different from (3), (4), equivalent to the Euler equation (see also ref. 1), but 
not so interesting for numerical implementations. For example, if we 
choose the right side of (8) as Hamiltonian, we obtain the following 
Hamilton equations 

0,@ = (:'It)(@) det V~ 
(15) 

0 : / =  --(( V:'It)' (@) 7 -  V(#It" Y(@-i) det V(@-l))(@)) det V@ 

From the first of equations (15) we obtain 

0, det V@ = det V@ div(:'It det V(@-I))(@) (16) 

which is identically solved by det V@ = I since div(~I t )= 0. Then system 
(15) is equivalent to 

0 , .  = u(.) 
(17) 

0,~, = - ( V u ) '  ( . )  ~ + V(u.  ~ , ( . - 1 ) ) ( o )  

where u=: ' (? (@-~)) .  It is not difficult to see that also Eqs.(17) are 
equivalent to the Euler equation. 

Now we give an explicit expression for the Hamiltonian. Since 

(VA -~ V-v)~ 

1 z: O~vj(x + z) dz 

= lim (4~ f " " ,  . . . .  p-o  Izl=p ~ -~ vi(x + z) &7 

1 ( 6  0" dz)  

1 & o v j ( x ) + l  lim f , ( 6~ z'zJ'~vj(x+z) dz (18) 
4n , - o  i,l>. \lzl 3 - 3  Izl 5/ 
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we obtain 

where 

(~v)(x) = ~v(x) + y  dy G(x - y )  v(y) (19) 

1 
G(z)= -4nn ( I z ~ - 3  z| -j -j (20) 

In Eq. (19), ~ is the Cauchy principal value. Substituting (19) in (10), we 
obtain 

l ~ d x  7(x)2 + ~  dx dy 7(x) H = ~ ./ det V~(x) �9 G(~(x) - ~(y)) 7(Y) (21) 

where the principal value in the second term must be intended as a limit 
on the region { I~(x)-~(Y)I  > e}. We remark that in the Hamiltonian in 
ref. 5 there is not the diagonal term �89 [ ~,2. 
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